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Abstract

Food safety may be compromised by the presence of chemical contaminants, such as 
mycotoxins and pesticide residues. Mycotoxins are natural contaminants produced by certain 
species of filamentous fungi and can cause toxic effects on human health. Pesticide residues 
are any specified substance in food resulting from the use of a pesticide with toxicological 
significance. To protect consumers from these toxic substances, different food regulatory 
agencies have set maximum levels permitted in different raw materials and processed foods. 
However, recent research has demonstrated a high incidence of both mycotoxins and pesticide 
residues (not simultaneously) in foods marketed all around the world, sometimes with levels 
above the regulated limits. One way to reduce such contaminants is to use ozone (O3) in food 
processing. Due to its high potential as an oxidant, O3 or the radicals generated in the ozonation 
process react with mycotoxins and pesticide residues that lose their toxicity due to molecular 
degradation. In this review paper the recent research into using O3 for gaseous ozonation 
and ozonized water to decontaminate food by eliminating and/or reducing mycotoxins and 
pesticide residues are discussed. Also the changes promoted in food quality attributes, the 
possible formation of degradation products of toxic relevance, as well as some perspectives for 
the future use of this technology in food processing are explored. 

Introduction

Every day more and more consumers, worldwide, 
are becoming aware of food safety and the risks 
associated with its contamination by microorganisms 
and by toxic compounds (Kher et al., 2013). The 
presence of contaminants in food, such as pesticide 
residues or mycotoxins, raises concerns in terms of 
public health and food safety. 

Pesticides are used in agriculture to improve 
productivity by protecting crops from disease 
and infestation. However, they must be applied in 
accordance with the Good Agricultural Practices 
(GAPs) and the levels present in foods must be below 
the Maximum Residue Levels (MRLs). MRLs of 
pesticide vary greatly worldwide, because countries 
have different requirements and different legal limits 
(EFSA, 2015; Handford et al., 2015). 

Nowadays, the high global usage of pesticides, 
approximately two million tons per year (De et al., 

2014), allied with the increased resistance of pests 
and pathogens, has posed a renewed concern on the 
use of pesticide in food (Liu et al., 2015). Despite the 
surveillance carried out by the competent authorities, 
recent research has shown significant incidence 
of pesticide residues at levels above the MRLs in 
various foods, such as: vegetables (Akoto et al., 
2015; Chourasiya et al., 2015), coffee (Oliveira et al., 
2016), honey (Bargańska et al., 2013; López et al., 
2014) apples  (Lozowicka, 2015), guava, kaki and 
peach (Jardim et al., 2014) and cereal grains (Min et 
al., 2012; Lozowicka et al., 2014). 

The ingestion of food contaminated with 
pesticide residues is associated with endocrine, 
reproductive and nervous disorders, as well as the 
risk of cancer (US EPA, 2014; Blaznik et al., 2015; 
Chiu et al., 2015). This contamination is of particular 
concern for infants and adolescents due to their lower 
detoxification capacity and high intake of food per kg 
body weight (Lombard, 2014).
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Mycotoxins are other food chemical contaminant 
with a rising concern in public health. Mycotoxins 
are harmful metabolites produced by a number of 
filamentous fungi, such as, Aspergillus spp., Fusarium 
spp. and Penicillium spp. that may contaminate food 
in the field and/or when improperly stored (EFSA, 
2013; Cheli et al., 2014). Their effects on human health 
depend on the mycotoxin and the level consumed. 
These effects may vary from mild intoxication to 
cancer and death (IARC, 2002; Marroquín-Cardona 
et al., 2014). GAPs include procedures to prevent 
infestation by fungi in stored products and avoid 
consequent contamination by mycotoxins; however, 
as they are natural contaminants, all humans and 
animals are exposed to such hazard. Recent studies, 
using urinary and breast milk biomarkers, carried out 
all over the world, showed a high human exposure to 
different mycotoxins, such as aflatoxins, ochratoxin 
A, zearalenone and deoxynivalenol (Srey et al., 
2014; Iha et al., 2014;  Rubert et al., 2014; Gerding 
et al., 2015).

Recent research has demonstrated that 
ozonation can be used to decontaminate and remove 
mycotoxins and pesticide residues in food, especially 
in fresh fruits, vegetables and grains. The molecular 
ozone (O3) or the hydroxyl radicals generated in the 
process, especially in ozonized water, react with these 
contaminants promoting their degradation and form 
lower molecular weight products, thus eliminating or 
reducing the biological activity of these contaminants 
in terms of toxicity (Ikehata et al., 2006; Diao et al., 
2012; Luo et al., 2014a). The United States Food 
and Drug Administration (FDA) has recognized, 
since 2001, that O3 is GRAS (Generally Recognized 
as Safe) for the treatment, storage and processing 
of food and water (FDA, 2001). The advantages of 
using O3 to decontaminate food products over other 
oxidants is that it is environmental friendly to produce 
and its use does not leave any residues in the food, 
as the O3 dissociates into oxygen. Consequently it is 
recognized as a “green technology” (O’Donnel et al., 
2012; Greene et al., 2012).  

Ozonation efficacy to degrade mycotoxins and 
pesticide residues depends on the O3 concentration, 
exposure time, type of food, moisture content, mode 
of application (gas or water), among others factors. 
Moreover, ozonation may cause positive changes 
in the quality of the food, such as, increasing the 
volume of breads and cakes or increasing strength 
and clarity of flours (Caballero et al., 2007; Li et al., 
2012). However, as it is not a universally beneficial 
process, O3 can also cause negative alterations, 
such as oxidation of lipids, changes in sensory 
characteristics, color loss, degradation of phenolic 

compounds and some vitamins, among other adverse 
effects (Patil et al., 2010; Gabler et al., 2010). These 
negative effects must be studied in greater depth to 
define the limitations of this technology.

This paper reviews the most recent studies on the 
reduction of mycotoxins and pesticide residue levels 
promoted by ozonation, including changes in the 
quality of the food due to its treatment. The possible 
formation of degradation products of toxic relevance 
and the future prospects for scientific research and 
the industrial use of O3 in the food science and 
technology field are also discussed.

Industrial production of O3 and legislation for food 
processing

Ozone must be produced on-site for immediate 
use in ozonation processes due to its instability 
and rapid dissociation into O2. When O3 is used to 
decontaminate food, it is usually produced with 
ozonizers based on corona discharge. Ozonizers 
expose O2 molecules to a high voltage electrical 
discharge which initiates the formation of free 
radical oxygen and thereby generates O3 (WCBBC, 
2006). The corona discharge method can obtain high 
concentrations of O3 at a low cost; however, UV 
radiation can also be used for commercial production 
of O3 but with a lower concentration and yield (Tapp 
and Rice, 2012).

Ozone can be applied in the gaseous form 
directly into the food, as occurs in cereal grains, or it 
can be bubbled into water to produce ozonized water, 
which is especially suitable for the raw materials that 
require an aqueous disinfection step (Coelho et al., 
2015). In the gaseous form, the half-life of ozone is 
a few hours in the presence of food, however, in still 
air at 0% humidity it can have a half-life of up to 25 h 
(McClurkin et al., 2013). When bubbled in water, O3 
dissolves partially, forming hydroxyl radicals (OH-) 
that can oxidize the contaminants more efficiently 
than molecular O3 (Takahashi et al., 2007). Ozonized 
water can be used for washing a variety of foods, such 
as fruits and vegetables, and it can even be used on 
cereal grains that require water as a conditioning step 
(tempering) prior to the milling process, like wheat 
grains (Ibanoglu, 2001).

There are no concentration limits for the 
application of O3 in food; however, as it is a GRAS 
substance its concentration should be as low as 
reasonably achievable (ALARA) and also in 
accordance with the Good manufacturing practices 
of the food industry. The American conference of 
governmental industrial hygienists set a limit of 
0.2 mg/m3 of O3 exposure for an 8-hour-day (FDA, 
2014), while the World Health Organization (WHO) 
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recommends 0.1 mg/m3 for an 8-hour mean (WHO, 
2006). As O3 is a toxic gas, levels higher than these 
limits may cause undesirable physiological effects 
on the central nervous system, heart, and vision 
(PubChem, 2015). 

Current concerns related to mycotoxins and the use 
of O3 to reduce food contamination

The contamination of food with mycotoxins 
is a serious public health concern and it can 
lead to many health problems due to the diverse 
toxic effects promoted by these substances, such 
as, cytotoxicity, genotoxicity, immunotoxicity, 
carcinogenic or teratogenic effects (Stoev, 2015). 
The main mycotoxins related to food contamination 
are the aflatoxins, fumonisins, zearalenone, citrinin, 
patulin, ochratoxin A, deoxynivalenol and other 
trichothecenes  (Rocha et al., 2014; Wu et al., 2014). 

In cereal grains, Fusarium toxins, such as 
trichothecenes, zearalenone and fumonisins, are the 
most commonly detected, particularly in the pre-
harvest phase (De Ruyck et al., 2015). Trichothecenes, 
like deoxynivalenol (DON), are known for their 
strong capacity to interfere with protein synthesis 
and induce immunosuppression (Antonissen et al., 
2014). Fumonisins are associated to esophageal 
cancer and can also interfere in the biosynthesis of 
sphingolipids with consequent cell activity disorders. 
Zearalenone is a potent estrogenic metabolite and 
can cause infertility, abortion and other reproduction 
problems (Yazar and Omurtag, 2008).

Aspergillus spp. and Penicillium spp. fungi 
are of great importance during food storage. If 
adequate moisture and temperature conditions exist, 
Aspergillus spp. can produce mycotoxins, such as 
aflatoxin, especially in oilseeds and cereals (Gorayeb 
et al., 2009). Aflatoxins (AF) are one of the most 
important environmental toxins and the AFB1 is 
the mycotoxin with the most toxicity in this group, 
with hepatocarcinogenic and immunosuppressive 
activities (Magnussen, 2013). Both Aspergillus 
spp. and Penicillium spp. may produce ochratoxins 
that mainly contaminate cereals, but they can also 
contaminate grapes and their derivatives, like wine. 
Ochratoxin A is the most relevant in this group and 
has been reported to be nephrotoxic and carcinogenic 
to humans (Sorrenti et al., 2013). These fungi may 
also produce patulin in apples, which is a genotoxic 
and cytotoxic substance (Glaser and Stopper, 2012). 
Certain species of Penicillium, Aspergillus and mainly 
Monascus may produce citrinin in rice, which has 
nephrotoxic, hepatotoxic and carcinogenic activity 
(Li et al., 2012b). Figure 1 illustrates the molecular 
structure of the main mycotoxins that occur in food.

The production of mycotoxins depends on 
the environmental conditions during plant growth 
and subsequent food storage, consequently their 
presence is sometimes unavoidable in food (Stoev, 
2015). Mycotoxins are stable to tradicional industrial 
processes applied to raw materials; thus if the raw 
food is contaminated, these mycotoxins will also be 
present in the processed foods, posing a health risk to 
consumers (EFSA, 2013; Tibola et al., 2015). 

When O3 is applied at low concentrations  to the 
storage of fruits and cereals with a long exposure 
time it can control or inhibit growth, germination and 
sporulation of fungi, thus preventing the production 
of their toxins (Giordano et al., 2012; Feliziani et al., 
2014; Hansen et al., 2013). However, these effects 
are very dependent on the fungal species, growth 
stage, O3 concentration and exposure time (Freitas-
Silva and Venâncio, 2010). 

On the other hand, to promote the molecular 
degradation of mycotoxins, high concentrations 
levels of O3 are needed. The exposure time, type 
of food, moisture content and temperature are 
also factors that directly affect the efficacy of this 
decontamination (Ikeura et al., 2011; Li et al., 2014). 
The degradation rates of mycotoxins by O3 reported 
in the literature vary widely due to the different 
experimental conditions used in each study. Table 
1 summarizes some recent experimental studies 
involving mycotoxin decontamination by ozonation 
in different kinds of foods, including the conditions 
applied and the degradation percentage obtained.

Besides experimental laboratory studies, 
McDonough et al. (2011) evaluated the use of 
ozonation on a commercial scale by applying O3 at 
4.7% in air to corn kernel using a continuous-flow 
system. The O3 was delivered into a screw conveyor 
with retention time for the grains moving through 
the system equal to 1.8 min.  Under these conditions 

Figure 1. Molecular structures of the main mycotoxins 
found in food. 1- aflatoxin B1, 2- aflatoxin G1, 3- citrinin, 
4- deoxynivalenol, 5- fumonisins B1, 6- ocratoxin A, 
7- patulin, 8- zearalenone. Reference: Adapted from 
PubChem (2015).
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there was an approximate reduction of 30% in the 
aflatoxins. 

Some studies have demonstrated the efficacy 
of O3 to degrade mycotoxin standards in solution, 
which is also a method that helps explain how O3 
promotes the mycotoxin degradation. Young et al. 
(2006) studied the effects of ozonized water at 25 
ppm in the degradation of DON, nivalenol (NIV) 
and other trichothecenes. These authors concluded 
that the degradation begins with attack of the C9-
10 double bond by O3 causing the mycotoxin to 
breakdown into organic acids, aldehydes, and 
ketones. This process effectively reduced the 
trichothecenes levels in solution. Dudziak (2012) 
studied zearalenone degradation by ozonized water 
at 1 mg/L for 20 min. This treatment reduced the 
concentration of the mycotoxin to undetectable 
levels. The authors concluded that the use of a 
high exposure time contributes to a more effective 
degradation. Freitas-Silva (2011) also demonstrated 
the potential of ozonized water at 20 mg/L to degrade 
a solution of cyclopiazonic acid. The author point 
out that the ozonized water can decontaminate not 
only mycotoxin standards with efficacy but also raw 
materials, laboratory equipment and reagents for 
disposal.

In order to study the practical use of O3 treatment, 
besides the proven reduction of mycotoxins levels that 

can be verified by analytical techniques, it is essential 
to identify the molecular products formed by the 
degradation of mycotoxins, and to have knowledge 
of their toxicity. Luo et al. (2014a) identified six 
degradation products of aflatoxin B1 by ozonation 
in aqueous solution at different O3 concentrations, 
through the structure–activity relationship, authors 
confirm that the ozonation eliminated the toxicity 
of aflatoxin B1. According to these authors, the 
unsaturated molecules are more easily attacked by 
O3, while the saturated ones are more resistant to 
detoxification. Diao et al. (2012) reported that the 
oxidation of AFB1 in acetonitrile, using gaseous 
ozone at 6.28 of O3 mg/L, formed thirteen degradation 
products and it eliminated the molecular structure of 
AFB1 responsible for its toxic effects. According to 
the authors, the toxicity of aflatoxin was significantly 
reduced because of the disappearance of the double 
bond on the terminal furan ring or the lactone moiety 
on the benzene ring. 

Another way to verify if ozonation can eliminate 
or significantly reduce the toxic effects of food 
contaminated by mycotoxins was demonstrated 
using animal models. Diao et al. (2013) showed that 
peanuts contaminated with AFB1 and then ozonized 
at 50 mg of O3/L for 60 h did not cause any symptoms 
of toxicity or changes in the appearance and behavior 
of female Wistar rats. These authors showed that 

Table 1. Summary of some recent studies involving mycotoxin decontamination in 
food by O3

1 Lower than the Limit of Detection (LOD) for the method used. AF: Aflatoxins. 
AFT: Total aflatoxins. O3: Ozone.
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the deleterious effects of AFB1 were reduced by 
the ozonation to such an extent that the health of 
the animals was not affected. Gaou et al. (2005) 
investigated if the treatment of wheat grains with 5 g 
of O3/kg grains would promote adverse effects on the 
health of Dark Agouti rats due to grain consumption. 
After 4 weeks, clinical, hematological, biochemical 
blood, urinary and histopathological determinations 
were not significantly affected; thus the consumption 
of the ozonized grains was considered safe. 

Luo et al. (2014c) studied the toxicity of 
the degradation products from AFB1 formed in 
artificially contaminated ozonized corn using the 
human hepatocellular carcinoma cell line (HepG2) 
as the model. The authors reported that the toxicity 
of ozone-treated corn had no significant difference 
with the corn free of mycotoxins. These different 
techniques indicate that the gas ozonation process 
and the use of ozonized water are effective to reduce 
food contaminated by mycotoxins and that they do 
not produce degradation products of any known 
relevant toxicity.

Applications of O3 to reduce pesticide residues in 
food

Pesticide residues are any specified substance 
in food, agricultural commodities, or animal feed 
resulting from the use of a pesticide, including its 
conversion products, metabolites, reaction products 
and impurities considered to be of toxicological 
significance (FAO, 2001). The impact on human 
health due to the use of pesticides in agriculture is of 
increasing concern in the eyes of the public due to the 
evidence between human exposure to these residues 
and chronic diseases, such as cancers, diabetes, 
neurodegenerative, as well as birth and reproductive 
disorders (Mostafalou and Abdollahi, 2013; Parrón et 
al., 2014). 

Food containing pesticide residues is a direct 
source of exposure and although industrial or domestic 
processing of food, such as peeling and cooking, can 
help reduce the contamination, these residues will 
partially remain in the final product, representing 
a health risk if ingested in high concentrations 
(Kaushik et al., 2009). The MRLs for pesticides in 
food samples are regulated throughout the world, and 
are basically concerned with the quality, efficacy and 
safety in the use of pesticides; however, there is not 
a global harmonized legislation (Malik et al., 2010). 
In general, developed nations have more stringent 
regulations than developing countries, which lack 
the resources and expertise to adequately implement 
and enforce regulation, posing a technical barrier to 

trade and to public health protection (Handford et al., 
2015).

In recent years, powerful analytical methods, 
especially mass spectrometry, have played a vital 
role in the identification and quantification of these 
substances in a variety of matrices (Malik et al., 
2010; Romero-González, 2015). These up-to-date 
tools have identified pesticide residues in human 
blood, urine, breast milk and hair by various authors, 
indicating a high level of exposure to humans 
worldwide (A El-Morsi and Rahman, 2012; Dewan 
et al., 2013; Yusa et al., 2015).

The number of studies investigating the potential 
use of ozonation to reduce pesticide residue levels in 
food has increased in recent years, especially studies 
concerning ozonized water to wash vegetables and gas 
ozonation to treat cereals. The degradation of these 
pesticide residues can be carried out via the molecular 
O3 reaction pathway with the food, which gives rise 
to selective reactions, especially with unsaturated and 
aromatic hydrocarbons; or, by an indirect pathway, 
involving radicals of higher oxidation potential that 
can attack organic and inorganic molecules with non-
selective reactions (Ikehata et al., 2006; Ormad et al., 
2008). 

For the treatment of drinking water, more drastic 
conditions of ozonation in terms of concentrations 
and exposure time may be applied compared with 
the treatment for food. Lafi and Al-Qodah (2006) 
studied ozonation associated with UV radiation for 
the treatment of drinking water and reported a 100% 
degradation of the insecticide deltamethrin and also an 
80% reduction of halogenated and non-halogenated 
compounds. Ormad et al. (2008) investigated the 
reduction of 44 pesticides by chlorine or O3. These 
authors concluded that ozonation was more efficient 
than chlorine as it eliminated about 70% of the 
pesticides studied, and with an advantage over 
chlorine as it did not form trihalomethanes after the 
treatment. When these authors incorporated a carbon 
activated absorption step together with ozonation, the 
levels of pesticides in water were reduced by 90%, 
demonstrating the high potential of O3 when applied 
together with other technologies in the treatment of 
drinking water. 

Ikeura et al. (2011; 2013) studied the application 
of ozone microbubbles (<50 µm in diameter) in 
water at low O3 concentrations (1 to 2 ppm) to wash 
fruits and vegetables, concluding that the use of this 
technique is highly effective in quickly removing 
pesticide residues. According to the authors, the 
microbubbles allowed the O3, which is highly 
insoluble in water, to be dissolved easily, generating 
higher amounts of hydroxyl radicals, which are very 
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effective at decomposing organic molecules. 
In contrast to its use for drinking water, ozonation 

of food is limited by the undesired changes that occur 
in the quality of these due to the high oxidizing 
capacity of O3. Consequently, an optimization of 
the conditions for decontamination must be studied 
for each food and for each pesticide residue. Table 2 
summarizes some recent studies involving pesticide 
residue degradation in food through ozonation.

Food alterations due to ozonation treatment
When O3 is used during storage or food 

processing in order to reduce the levels of residues 
or contaminants, its high oxidation power may 
promote unwanted changes in the food quality. 
Fruits and vegetables are the most affected by the 
negative effects of ozonation due their high moisture 
content, enzymes and phenolic compounds. Patil 
et al. (2010) bubbled apple juice with 0.048 mg of 
O3 for 10 min and observed a change of color and 
reduction of phenolic compounds. These authors 
suggested that the O3 and the hydroxyl radicals (OH-
) generated may have opened the aromatic rings of 
the phenolic compounds which lead to the oxidation 
of organic acids, aldehydes and ketones. They also 
suggested that the loss of color was a consequence of 
the breakdown of conjugated double bonds. Gabler 
et al. (2010) also reported color changes and other 
injuries when they used ozonized water at 5 mg of 
O3/L to wash grapes for 1 h. However, such changes 

can also be promoted by other oxidant processes, for 
instance; loss of flavonoids in fresh-cut onion slices 
due to washing with sodium hypochlorite (Pérez-
Gregorio et al., 2011); induced browning of lettuce 
due to gaseous ClO2 (Mahmoud et al., 2008);  color 
alterations of red bell peppers and strawberries due 
to sanitization with H2O2 solution (Alexandre et al., 
2012).

Several other studies involving ozonation have 
reported a significant loss in vitamin C content. 
Beltrán et al. (2005) reported a loss of ascorbic acid 
in lettuce when ozonized water at 20 mg of O3/L was 
used. Tiwari et al. (2009) reported the same reduction 
and also a loss of anthocyanin in strawberry juice 
bubbled with 7.8% of O3 for 10 min. A loss of 
ascorbic acid as well as carotenoids was reported by 
Chauhan et al. (2011) when they used ozonized water 
to wash carrots for 10 min. 

On the other hand, Karaca and Velioglu (2014) 
used 12 mg/L of ozonized water for 15 min to wash 
lettuce, spinach and parsley but did not observe 
any changes in the levels of chlorophyll, ascorbic 
acid, total phenolic contents or antioxidant activity. 
Aguayo et al. (2013) also did not reported changes 
in the quality of tomato slices when 0.4 mg/L of 
ozonized water was applied for 3 min. Tzortzakis et 
al. (2007) did not observed changes in the quality of 
tomatoes stored for 6 days at 1 µmol/mol of O3 .

Positive changes may also occur, as reported 
by Ali et al. (2014) when stored papaya fruit was 

Table 2 - Summary of recent studies involving pesticide residue degradation in food by O3
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ozonized with O3 at 2.5 ppm for 10 days. Higher total 
solid values, ascorbic acid, β-carotene, lycopene 
and antioxidant activity were obtained in relation to 
the control sample, meaning a lower decay in these 
compounds with time. Similar results were reported 
by Yeoh et al. (2014), when fresh-cut papaya was 
treated with O3 at 9.2 mg/L for 20 min. The authors 
observed that the total phenolic content increased 
by 10.3%, which occurred due to the activation of 
certain enzymes that are stimulated by different 
abiotic stresses.

When applied to cereal grains, the effects of O3 
may be confirmed through the changes of certain 
quality parameters in the flour obtained from the 
ozonized grains. Violleau et al. (2012) applied 5 g 
of O3/kg grains and reported greater force and less 
extensibility in dough due to the oxidation of gluten, 
which interfered in the technological properties of 
the flour. Li et al. (2012) used 5 g of O3 for 60 min 
and reported greater dough development time and 
an increased stability in the flour, which also occurs 
when other oxidizing agent, such as potassium 
bromate or chlorine are used. In this case, O3 has the 
advantage of promoting the same effects, but without 
leaving potassium bromate or chlorine residues in the 
food. Sandhu et al. (2011) reported similar changes 
when they exposed wheat flour (100 g) to 1500 mg 
of O3 for 45 min.

Sandhu et al. (2012) described that the use of O3 
at 1500 mg/kg for 45 min on wheat flour resulted 
in depolymerization of high molecular weight 
amylopectin, with a consequent increase in low 
molecular weight polymers, which may be useful 
for flours with low viscosity, high clarity, and low 
temperature stability requirements.

As occurs in fruits rich in pigments, ozonation 
may also react with the conjugated double bonds 
in the carotenoid of wheat flour decreasing the 
yellowness (Sandhu et al., 2011).  Li et al. (2012a) 
reported this effect when they used 5 g of O3/h for 
60 min, and suggested that ozone can be used as a 
bleaching agent for wheat flour. 

An undesirable effect of O3 reported in some 
studies, is the formation of an unpleasant smell in the 
flour after the ozonation process, due to the formation 
of volatile low molecular weight compounds, as 
described by Chittrakorn et al. (2014) and Li et al. 
(2012). However, according to these authors, the 
aeration of the flour using storage ventilation can 
easily eliminate this problem. 

In animal products, O3 can also be applied to 
control microorganisms without promoting unwanted 
changes in quality, as reported by Iacumin et al. (2012) 
when sausages were stored in at 1 ppm atmosphere of 

O3. Kamotani et al. (2010) used gaseous O3 (9.7% 
in oxygen for 40 min) for processing eggs as an 
alternative treatment to pasteurization and reported 
no significant changes in the characteristics of the 
product, and with the advantage of not having to use 
heat. On the other hand, Uzun et al. (2012) observed 
reduced solubility of whey protein isolates and egg 
yolk proteins as a consequence of both aqueous 
and gas ozonation. Ozone treatment also negatively 
affected the emulsion activity of whey protein isolates 
and reduced their stability.

Perspectives for the use of O3 in food processing
Based on the recent evolution of studies 

involving ozonation of food, more research can be 
expected with the goal to integrate gas ozonation 
or ozonized water into the traditional or innovative 
food processing procedures in order to reduce 
residues and contaminants, especially pesticide 
residues and mycotoxins. In fact, some studies 
have already been done, demonstrating interesting 
results. Chauhan et al. (2011) studied the washing 
process of carrots using ozonized water followed by 
storage in a controlled atmosphere, which reduced 
the lignification and kept the quality of fresh-cut 
carrots for 30 days. Chen et al. (2013) evaluated the 
effects of ultrasound combined with ozonized water 
on the degradation of organophosphorus pesticides 
residues in lettuce. With the use of both technologies 
the average levels of reduction peaked 82%, without 
negatively affecting the quality of the vegetable. 
Puzyr et al. (2010) studied the efficacy of ozonation 
followed by adsorption on nanodiamonds hydrosol 
to decrease the aflatoxin B1 content. These authors 
suggested that the use of these technologies together 
is a new approach to mycotoxin decontamination, 
where the ozonation degrades the toxin and the 
nanodiamond adsorbs the residual levels with high 
efficacy. Dudziak (2012) evaluated the application of 
an integrated system of ozonation and nanofiltration 
using a cellulose acetate membrane to remove the 
mycotoxin zearalenone in water.  This study showed 
that with the combined use of these technologies it 
was possible to eliminate 100% of the zearalenone. 

Ozone has a significant potential to be applied as 
a substitute of the normal chemical agents used in 
vegetable sanitization, fumigation of grains and in 
food storage, especially as it does not leave residues 
due to the treatment. Special attention should be 
given to the processing of organic food. According to 
the United States Department of Agriculture, organic 
food can be treated with ozonation, and the food 
can be classified as “100% organic” or “organic”, 
depending on the O3 usage (USDA, 2011). Other 
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regulatory agencies in different countries do not make 
restrictions on the use of O3 as a sanitizing agent for 
organic food, which makes its use very promising in 
this sector.

Due to the consumer’s interest in new food 
processing technologies and the excellent results 
promoted by ozonation in improving the quality 
of food, new types of ozonizers are expected to 
appear on the market not only for industry but also 
for domestic use. Based on such expectations, more 
scientific research should be conducted, evaluating 
the effects of ozonation on the removal of different 
residues and contaminants, the possible formation of 
toxic degradation products and, also, the processing 
cost studies in order to disseminate a more practical 
and commercial application of this technology.

Conclusion

Current consumer perceptions concerning food 
safety and the rising concern about the presence of 
residues and contaminants has opened new fields of 
study for emerging food processing technologies. 
Gaseous ozonation and ozonized water are interesting 
nonthermal methods and with high efficacy for 
the decontamination of pesticide residues and 
mycotoxins in different types of foods. According 
to recent research, O3 can degrade and reduce both 
mycotoxins and pesticide residues in food. As verified 
by mass spectrometry, using structure–activity 
relationships and also according to the studies with 
animal models, the toxic effects of food contaminated 
by mycotoxins can be eliminated or significantly 
reduced using ozonation processes. Some negative 
effects of ozonation are the undesirable changes 
that may occur in food quality, such as, a loss of 
phenolic compounds and ascorbic acid, inactivation 
of some enzymes and changes in color, especially 
when applied to fresh vegetables and fruit products. 
However, when optimal conditions are determined 
for each food, these effects will be greatly reduced. 
More studies are needed to clarify in depth the effects 
of ozonation on a higher number of mycotoxins and 
pesticides as well as the influence of the process on 
a greater variety of foods. The most recent studies 
that have demonstrated the excellent effects of O3 in 
improving the quality of food should result in greater 
interest of this technology by the food industry, and 
consequently a wider acceptance and popularization 
of ozonized products by consumers.
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